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NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC S

TECHNICAL MEMORANDUM 1346

NONLINEAR THEORY OF A HOT -WIRE ANEMOMETER*

By R. Betchov

We study here the properties of a hot-wire anemometer under the
supposition that the heat transfer from the wire to the air depends,
first, on the difference in temperature and, second, on the square of
that difference. This latter hypothesis is confirmed by experience,
and the consequences might be of great importance, that effect of non-
linearity is stronger than the effect of thermal conduction.

I. THE NONLINEAR LAW OF KING

The heat quantity Q removed per second by an air stream V from
a wire of the diameter d and unit length is given by King in the form

Q= (a+bw)T (1)

where T denotes the temperature difference between wire amd air. King’s
calculation, approximately confirmed by experience, yields

a=~v b = ~2n?d6’c’ (2)

with % ‘ = thermal conductivity of the air, 5? = density of the air,
snd C! . specific heat of the air for COn5taIlt volume.

These quantities may vary with T, and experience shows that a
increases while b remains practically constsmt. Intuitively, one may
interpret this effect by saying that the air in contact with the wire
is heated which increases its conductivity. In compensation, its density
decreases because the pressure varies only very slightly. Obviously,
the effects on X’ and ?5’ compensate one another, and only a varies.

*“The&ie non-lin~aire de l’an6mom>tre & fil chaud.” Koninklijke
Nederlandsche Akademie van Wetenschappen. Mededeling No. 61 uit het
Laboratorium voor Aero- en Hydrodynamic der Technische Hogeschool te
Delft . Reprinted from Proceedings Vol. LII, No. 3, 1949, PP. 195-207.
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King states in his originsl report (ref. 1) that a increases by
0.114 percent per degree; he also describes there an effect of the
diameter on that term a which.we shall not discuss here. Thus it is
advisable to write

Q = {a(l + yT) + b@}T (3)

where y takes the nonlinearity into account.

One must not forget the hypotheses on which King bases his calcu-
lation: he contends that the air flow is without viscosity and that
the heat flow in the immediate proximity of the wire is constant. He
uses the specific heat at constant volume slthough the pressure is
certainly more constant than the density. For that reason, we consider
equation (3) as an empirical relation, valid for the wire unit length,
and would wish to see King’s problem made the subject of a more thorough
investigation.

Here we intend to study the effect of the term 7 on the properties
of the hot wire; we simplify the notation by introducing P so that

(4)

Q=a(l+P+yT)T (5)

II. GENERAL EQUATION OF THE HOT WIRE

We shsll use the following symbols:

s resistance of the wire, per unit length, at operating
temperature

so resistance of the wire, per unit length, at mbient temperature

I intensity of the electric current heating the wire

a coefficient of the variation of S according to the
temperature

m weight of the wire, per unit length

..——-—. .,....— .—,,,, ,,..-,- .,,-.. —.-,, —- ,,,., - .
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c specific heat of the wire, in joule/grsm and degree

,> x- coefficient of the thermal conductivity of the wire in watt/cm
and degree

o wire cross-sectional area

1 semilength of the wire

t time

x coordinate of position, varying from 1 to -1

We put

A=-&
a+b~

(l+P)= ~
o 0

(6)

The equation of the hot wire must express the equilibrium between
the heat supplied per second, the heat removed by the air stream, the
heat required to raise the temperature of the wire, and the heat trms-
mitted by conduction. One obtains

z 2(s

mc 3S Za %3S12=A(S-SO)+— - so)2+— —-———
0f30at alsoaxp

(7)
o

For the steady-state case, and introducing the parameters

y=% “’l=%% ‘=A<:2(s-
~=2w ~2/A2 2X 1 12/A.—

3 ~2So (1 _ 12/A)2 ‘Sal + P (1 _ 12/A)2

one obtains the equation (7) in the form

apz ~Z+;GZ2-—=
ayp

1
so)

(8)

(9)
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III. EXACT INTEGRATION OF THE STATIC CASE

Multiplying equation (9) by ~Z/~y snd integrating, one obtains,
with a constant

bz GZ3 + ZP - 2Z + const
s={

(lo)

One notes that bZ/ay is zero for a negative value of Z and may
be zero for two positive values of Z. At the ends of the wire, one

has S = So and Z = O; at the center, Z must be positive and az/ay

zero. The rsnge of interest for us lies, therefore, between Z = O and

the first positive root which gives
az
— = O which we shall denote byay

Z=B. We put

Z(y) =B - X2(Y) (11)

By virtue of the relation

G133+ BP -2B+const=0

one obtains

h(?)X/ay)2 = 4X4 + EX2+ D

(12)

(13)

with

E=1+3GB D=2(l- B) - 3GB2 (14)

Following, we shall consider B as a new integration constant

indicating the temperature in the middle of the wire. At the center of

the wire, one has X = O and

k(?)X/by)2 = D (15)

.

.- —... ,,, ,,. ,



1? “

NACA TM 1346 5

which shows that D is positive and generally small. At the ends of

the wire, Z=O and X= i@.
.

The roots of equation (13)

X2 =

are

-ZG

Introducing the parameter 13 so that

2@D
sinh ~ = sh ~ =—

E

one can write equation (13) in the form

[ 1[ 14(bX/by)2=G~(ch~ + 1) -X2 ~(ch~ -1) +X2

We define the angle cp,function of y, so that

with

k* . ch~+l

2ch~

Equation (18) then becomes

(17)

(18)

(19)

(20)

(21)
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and we obtain the elliptic integral. of the first kind

The variable y veries from -~ to ~, with

snd we have, for Y=~ 511d X2=B

with

This last equation’ may be written

1 .kp+ D

%sin mu ‘B ch ~

From equation (20) one may deduce

1
—. 1 + tanh2(p/2)
~2

With B ranging from O to +CO, k2 varies from 1 to 0.5.

NACA TM 1346

(22)

(23)

(24)

(25)

(26)

(27)
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With G and B known, one may cslculate successively D, E, 13,
k, and qma. A table of U(k,cp) then permits us to calculate ~.

--Figure 1
starting
B from

The
function

gives the results obtained by this procedure and allows -
out from a prescribed wire and with y known - to determine
G and ~.

temperature distribution over the wire is given by Z as a
of y, or by X as

The relation q(y) is given
a function of 0 and Q a function of .y.
by the quotient”of

namely
equations (22) and (24;,

(28)

From equations (19) and (25), one obtains a relation between Q and X,
namely

X2 sin2q 1- k2sin%pma
—.
B %sin mm 1 - k2sin2q

The total resistance R of the wire is given by

We introduce the cold resistance R. snd the function X

(29)

(30)

(31)

1 ---
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We replace X according to equation (19) and dy according to equa-.
tion

with

tion
duce

(21), namely

The integral is equal

R -Ro=

The values of &J/ak2

to 2aU/ak2 and we obtain

R.12

(
B-

2D aU/ak2

A- 12 Ech~ U )

can be deduced from a good
sufficient approximation.

If the wire were perfect, the expression
(33) would have to be replaced by unity;
the quantity M so that

M=l-B+ 2D &J/ak2

Ech~ U

in parentheses in equa-
therefore, we shall intro-

The formula (33) then gives us

R=R l- M12/A

‘l- 12/A

and the important relation

(33)

table of U(k,q)

~12

{
=Al+

R - R. J
A(1 - 12/A)
1-M

(34)

(35)

(36)

This last equation permits easy determination of the wire charac-
teristics because R, Ro, and I can be measured accurately and because

the curves obtained as functions of R/Ro, for instance, indicate directly
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the effects of conduction and of nonlinearity. We calculated the vsJ-ues

of M
— as a function of G and ~; figure 2 shows our results.
1 -M

A good approximation is given by

M 1— . .
1

-1+2
-M B. E -1

where B. corresponds to B, in the case ~ = m

B. =
+~l+6G-1

3G

(37)

(38)

IV. A FEW USEFUL APPROXIMATIONS

In performing the calculations necessary for the plotting of fig-
ure 1, we have noted that one may assign to k the value unity without
introducing large errors.

Tnis implies 13= O and equation (19) then gives

The integral (22) becomes

whence, one deduces ,

1 + sin%
ch(2U) = = ch(@y)

1 - sin2Q

(39)

(40)

(41)
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X2 = ~(chfiy - 1)

At the limits, one has

which gives

NACA TM 1346

(42)

(43)

(44)

In order to calculate M, one must put

which gives

(46)

One can see th”at, due to the nonlinearity, ~ is replaced by fi~,
and the central temperature is lowered.

If one takes equation (44) as solution of equation (9), one sees
that the equation is satisfied for a term of approximately (chfiy/chfi~)2,
and that B is given approximately by

B=
( )

_ -1 (1 - l/ch ~~)

%
(47)
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with

E~~G (4a)

We shall take am example that represents an extreme case. We
choose a platinum wire with 10 percent of iridium, a dismeter of 7 microns,
and a length of 21 =
heated with 75 mA, it

P = 2.9

1* = 0.15

1.14 mm. Exposed to an air stream of 5 m/see and
gives us

A = 1.2x 10-2 12/A = 0.47

mm t= 3.75

Assuming y . 1.2 x 10-3 and with the aid of figures 1 and 2, we
determined

G = 0.25 B = 0.76 E = 1.56 M = 0.4

The other parameters have the following calculated values:

k = 0.99756 qmsx = 79.5°

sh ~ = 0.14 D = 0.0477 U = 2.3h

In figure 3, we show the profile of the temperatures calculated
exactly, the profile calculated with the approximation k = 1, and the
profile calculated with Y = O. It can be seen that the nonlinearity
offers a more uniform temperature distribution, and that the approxi-
mation is sufficient.

By means of equation (35) one calculates R
~= 1.5, whereas the

calculation with Y = O would give the result 1.9. The mean tempera-

ture giving
R
— . 1.5 would be 380°.
R.

As to the term R12/R - Ro, it changes from the vslue 1.24 A when

the current is very weak to the value 1.35 A when I attains 75 mA.
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R
It varies therefore by about 10 percent between — = 1 and — = 1.5R. :
which is of the same order as the variations observed.

Thus this magnitude is constant at 10 percent and King’s law is
verified; however, we shall see later on that the thermal inertia is
very different from the expected vslue.

V. THE DYNAMIC EQUATION OF THE HOT WIRE

In order to calculate the variation of the total resistance of the
wire when the current or the air stresm fluctuate, one must go back to
the equation (7). Replacing in this equation I, S, amd V (contained

.
in the term A) by I + iejut, S + se~t, and V + veJmt, one obtains

after suppressing the terms of the order zero, two, and more as well as
the factor eJut

2SIi + 12s = ~~(S-So)+ As+
Xo %s

*(s- so)s+~jms ———
2US0 v a So o Us. &2

(49)

We introduce

A- ~2
2=s

S.12

(50)

and, identical to the formula (9) of our Mededeling No. 55 (ref. 5)

Us.
(JJ* . --#A - 12) (51)

One then obtains, after introduction of Z

L+2AJ2Lz.2 J?- Z v $’Z
21 11- 12/A 21+P1-

= 2(1 + 3GZ + jm/u)*) - —
12/A ~

b2

(52)

—!!. .
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The function Z(y) appears twice in this differential equation, and we
must utilize the approximation k = 1 in order to avoid great compli-
cations. Writing the expression Z according to equation (44), one
obtains

azz (-—+-z 1 + 3GB
+ jo/u* -

3GB

)
ch @y

ch fly=Cl+c2ch@~
ayz 1- l/ch fi~ ch@ -1

(53)

with

“( 12/A
cl=2:l+—

B

)(

lV P 1 B——

1- 12/A 1 - l/ch iE- ‘~V1+p~-~2/A1- l/chfi~ )

(54)

C2 = -2 i 12/A B

(

+>V P 1—— \
II- @. 1 - l/ch fig 2vl+P~_ ~2/A 1 - l~ch fi~~

(55)

The solution without the second member of equation (53) is a
Mathieu function taken for a purely imaginary value of the argument,
but if WE is large enough, for instance, more than 4, one may neglect
the term with chfiy of the member on the left side of equation (53).
Actually it is important only when y is close to ~; however, we shall
take as a limiting condition z(~) = O, and the product z chfiy will
never be important. We shall also neglect the term l/ch fi~ in the
denominator of one of the terms on the left side of equation (53) which
amounts to taking Z = B in the factor term of z.

Taking the definition of

a2z.— + z(E +
a?

E into account, one then has

ju/m*) = Cl + C2
ch fiy

ch fi~
(56)

the solution of which - null for y = t~ - is
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p.

It can be seen that due to
frequency O* is replaced by a
tor E. (Compare with equation

the nonlinearity the characteristic
new frequency which is higher by a fac-
(8) of ref. 5.) The amplitudes according

to c1 ~d ~2 also are modified by the non.l.inearity.-
—

The variation r of the total resistance R will be

+1

f

R012 ~ ~
r. s~.

J
Z dy

-1 A- 12~ ~
(59)

The integration gives

We assumed above that fi~ is sufficiently large; also, we may
assign to the hyperbolic tangents the value unity (the presence of a
complex argument is here not of importance).

One then obtains

[

R012 Cl C2
r=

($
—(1 - l/pfig) += ---

A- 12 Ep2 P
(61)

VI. RESPONSE TO A FLUCTUATION OF THE CURRENT

If one assumes v = O in equations (54) and (55), one may trans-
form equation (61), suppressing the terms containing l/ch fi~

rl = 2iRo12/A

{

~- B12/Ao* p-l

(1 - 12/A)2 EP2
(]m~ ju p

(62)
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This formula
at the boundaries

15

gives the alternating electromotive force produced
of the hot wire by the modulation current i in

addition to the normal electromotive force Ri. Although this formula
>- seems to-be complicated, it can be adapted to the needs of practice.

If the frequency m/2Tc tends toward infinity, equation (62) becomes

2iRo12/A (1 . 12/A(l - B) - 12/AB/@~L
rI =

(1 - 12/A)2 @/&
(63)

/

If one takes into account that equation (35) gives R, that equation (46)
gives M, and that equation (51) gives u)*, one finds

--& iCR12
&o

rI = with c=—
Yanc

(64) (65)

The constant C corresponds to that of our former publications,
and equation (64) shows that the electromotive force rI taken at high
frequency permits to measure C without being impeded by either con-
duction or nonlinearity. The method described in reference 4 is there-
fore indicated rather than the one consisting of measuring the phase
displacements, with u being of the order of u*.

One may immediately verify this point by assuming o in the equa-
tion (49) as very large, thus making the effect of the terms of conduction
and of nonlinearity negligible.

When o tends toward zero, the electromotive force becomes

2iRoI*/A
rI =

{

12
~l-lM

(1 - 12’/A)*E
-&(l-l*/A(l -*B))} (66)

Thus the complex function rI according to equation (62) will chsnge
from equation (64) into equation (66) when u varies from O to a large
value. The complex trace of this function gives practically a semicircle
which permits to put approximately

rl = rI(u = O)

1 + juyul++++
(67)

— —
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where m~ denotes the effective characteristic frequency. In fig-
ure 4, we plotted the semicircle and indicated a few vslues of u/o.W+.
From equation (62), and in the case of the preceding example, w@ calcu-
lated the electromotive forces rI for a few values of u.)/Em*. One
can see that the two functions blend, at low frequencies, if one assumes
U** . 1.W* = 1.72tD*. At high frequency, equations (64) snd (67) will
be equal which permits calculation of a satisfactory value of c&+ when
the effect of thermal inertia is important. One obtains

““=’-’’”’{*1
(68)

In the case treated one finds u.)**= 1.23E0*, that is, uN++ = 1.9W*:
the effective characteristic frequency is almost twice the expected
value; therefore, the approximation (67) gives a correct plot of the
function, but the phases according to equation (68) will be only within
a 10-percent accuracy.

The denominator of equation (68) depends chiefly on ~, and it
increases the characteristic frequency. Instead of compensating each
other as in the static case, the two effects reduce the thermal inertia.

Intuitively, one may say that the conduction shortens the hot part
of the wire and thus reduces the heat required for modifying the central
temperature; the nonlinearity depends on the presence of hot air around
the wire, and the thermal inertia of the air is negligible which improves
the spherical response of the anemometer.

When the wire is dusty, the qusntity of immobile air is greater,
and the experience shows that the term a in equation (3) is increased
while b remains unchanged. One must therefore expect a dynamic action
of the dust of the wire to the extent that E is modified. The dynamic
effect may be more important than the static effect.

The wire in the quoted example demonstrates that, with a term
R12/R - R. constant at 10 percent, the characteristic frequency may be

slmost twice the normally foreseen vslue.
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one

VII . RESPONSE TO A FLUCTUATION OF THE AIR STREAM

Assuming i = O in the formulas (54) snd (55), and maintaining v,
may transform equation (61) into

r~=.LIA Ro13/A B

2Vl+P(I.12/A)21 - l/ch fi~

{

1 -1/pfiE u’ p-l 1-—— —
~p2 jm p WE }

1

With o tending toward zero, one has

H
~_31.—

rl=-:~ P Ro13/A B 2 fEE

2 V 1 + p (1 - 12/A)2 1 - l/ch~E~ E

(69)

(70)

If m tends towsrd infinity, one has

and one may approximately replace equation (69) by the semicircle

~1 = rI(m = O)

1 + jw/u**

with

(72)

(73)

which, in the case of the exsmple treated above, giVeS U** = le8~*0
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Thus there is, on principle, no equality between the dynamic reac-
tion to a variation i snd to a variation v.

This difficulty arises due to the term fig, nemely to the conduction;
the nonlinearity tends toward diminishing its importsmce (factor W).

We hope to publish some
the differences indicated by

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics

empirical results, and the calculation of
different authors, in the near future.
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Figure 4.- Study of the tension rI. The semicircle corresponds to
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